Item request has been placed! ×
Item request cannot be made. ×
loading  Processing Request

A Comparative Study of Parking Occupancy Prediction Methods considering Parking Type and Parking Scale.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Subject Terms:
    • Abstract:
      Parking issues have been receiving increasing attention. An accurate parking occupancy prediction is considered to be a key prerequisite to optimally manage limited parking resources. However, parking prediction research that focuses on estimating the occupancy for various parking lots, which is critical to the coordination management of multiple parks (e.g., district-scale or city-scale), is relatively limited. This study aims to analyse the performance of different prediction methods with regard to parking occupancy, considering parking type and parking scale. Two forecasting methods, FM1 and FM2, and four predicting models, linear regression (LR), support vector machine (SVR), backpropagation neural network (BPNN), and autoregressive integrated moving average (ARIMA), were proposed to build models that can predict the parking occupancy of different parking lots. To compare the predictive performances of these models, real-world data of four parks in Shenzhen, Shanghai, and Dongguan were collected over 8 weeks to estimate the correlation between the parking lot attributes and forecast results. As per the case studies, among the four models considered, SVM offers stable and accurate prediction performance for almost all types and scales of parking lots. For commercial, mixed functional, and large-scale parking lots, FM1 with SVM made the best prediction. For office and medium-scale parking lots, FM2 with SVM made the best prediction. [ABSTRACT FROM AUTHOR]
    • Abstract:
      Copyright of Journal of Advanced Transportation is the property of Hindawi Limited and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)